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Landau damping of an electron plasma wave in a plasma with modulated density
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The collisionless Landau damping is analyzed for a homogeneous plasma with a sinusoidal density pertur-
bation. The exact damping values are obtained by numerically solving the kinetic dispersion relation of the
electron plasma mode. Quantitative results are provided on the influence of the amplitude and the wave vector
of the density modulation. Within a simplified fluid framework, a fit is given to these data.
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PACS numbgs): 52.40.Nk, 52.35.Nx, 52.68-h

In the context of inertial confinement fusiqhCF), nu-  beating of an incident laser wavave-vectork,) with a
merous works have reported over the years on Raman scdiackscattered wave, driven by stimulated Brillouin back-
tering, which is able to amplify an electron plasma wavescattering(SBBS, the decay of the incident laser wave into
(EPW) and a scattered electromagnetic wa#&MW). The  an EMW and an IAW or by reflection; the IAW wave vector
first analytical predictions of its amplification mentioned is then ZX,. The kinetic dispersion relation in a modulated
gain lengths smaller than 1@m, whereas the latest experi- plasma was originally given by Barr and Chigj,
mental observations of substantial backscageay 1% frac-
tion of the incident energyexhibit gain lengths of a few 1 N e . N
hundredths of aum [1]. The usual predictions assume the | 1+ —) E(k,0)=— 5[E(k+ks,w)+E(k—ks,w)],

. L Xe(K o) 2
electron velocity and the density distribution to be Maxwell- 1)
ian and homogeneous, respectively. Various papers have
tried to explaln_ the d|fference_ betw_e_e_n theory and EXPEMY here E is the time-space Fourier transform of the EPW
ments by invoking secondary instabilities such as the Langélectric field, ,k) is the pair(radial frequency, wave vec-
muir decay instabilitfLDI) of the EPW 2,3], kinetic effects Ty S P s € y, wav .

. . . : -~~~ tor) associated with the EPW's solutions of this dispersion
associated with non-Maxwellian electron velocity dlstrlbu—r lation. andy. is the electron tibility given b
tions[4], or the presence of magnetic fieldd. The relativ- elation, andye IS the electron suscep y given by
istic motion of the electrons could also be invoked but, even 5
in high intensity regions of the laser focal spot, the electron wpe [+ dyf,
quiver velocity induced by the laser electric field usually Xxe(k,0)= k2N f
stays below 10% of the velocity of light in vacuum. ee
the plasma collsctive behavior, namely. the EPWLandag? i (e background electron plasma frequency &g
damping, which needs to be c;)nsidere(,i when the eIectroLﬂhe initial velocity distribution. Following Ref6,9,10,4, f,

- o T Can be cast into the general expression
density is modulated and/or the velocity distribution is non-
Maxwellian. The latter corresponds to the high-intensity
limit in ICF plasmas whenever the electron heating by in- _ Neo _ viia, )"
verse bremsstrahlung is faster than the electron thermaliza- fo(v)=C(n) -3¢ (Ml )
tion [6]. We limit our study to a one-dimensional plasma,

thereby disregarding any refraction processes. We :;1ssur7\}$nere\/Te is the thermal velocitya,= 3T (3/n)/T(5/n) (I

that the plasma density is perturbed by a static ion-acousti : : I
wave (IAW: the influence of a growing IAW is outside the % the gamma functignandC(n) is the normalization factor

. . . . n/[47a3T(3n)]. In laser-plasma interaction, the exponent
scope of this papgr with a sinusoidal patternne(x) can be increased from 2 to 5 by increasing the laser intensit
=nNg 1+ & coskx)], wheree = dn./n., denotes the ampli- 20y 9 y

X : . and consequently the heating rate. The EPW frequency and
tude of the density modulation akd is the IAW wave num- the Landau damping have been recently analyzed as a func-
ber. The coupling between an EPW and an IAW, with re-_. fth ping f y y
spective wave numbets and kg, is known to lead to the tion of the exponenh in Re_ -[4]. .

eneration of EPW harmonicss, with wave numbes=K Equation(1) is solved using a Newton-Raphson algorithm
imks (m is an integex. The number of intense harm;nics that is well adapted to finding the zeros of nonlinear equa-
nteger . . ’ tions [11]. For calculatingy., we have chosen a general
denoted my,, is roughly given by the relationmy

_ . . method based on the sampling theorfhi] that can deal
= Jel3(1kshpe), Wherehpe is the Debye shielding length i a0y hyper-Gaussian velocity distribution,

[7]. The larger this number, the stronger the Landau damping

dv (2)

—® (X)_kV '

Te

of the shorter wavelength harmoni® 3]. The relevant pa- +oo

rameters of the problem are the density modulati@and the gn(t)Ee—\t\”: 2 eIt sinc Z(t—tm) +ernt)
normalized wave vectorga=kAp. and ks=K\pe. In our m=— h

first step, we shall assume that the IAW is produced by the 4
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where sirc(X)=sinx)/x, t,=mh, h is the sampling time 107 &=
step, and ert( is the error, which can be disregarded if the = =
Fourier transformG,(w)=FT(g,) is small enough folw| - ]
=1/h. In our caseg, andG,, decrease sufficiently for large 1074 = —
t andw that we can reasonably truncate the series in(&q. = s 3
After some algebra and defining= w/k\pe, EQ. (2) be- — ) 1
comesl[for Im(z)>0] 10 -=
2 E =
2maC(n)|[2 (1 z z < J S .
Xe(K,w)=——————|—T| =+ —Z,|—||, (5 3§ 10 [/ : =
(K\pe)® LN \N/ e lae . = /b =
with 10—55— ;‘// —
= —
= -
+N —i i ;
nl_ —1)Me i(mz/h) — i —
Zn(Z): E he_‘tm‘ ( ) . (6) 10_65 il 2 /f =
m=—N th—2 = 0 3
= 0 -
=i =
For the Palf-space InZ) <0, we useZ,(z)=[Z,(z*)]* 0 0.1 0.0 0.3 0.4
+2ime * (where * denotes the complex conjugat&or o
De

n=2 (respectively 5 we use N,h)=(25,0.25) [respec-
tively (100,0.03]. To chqose thi p_allnrl\{,h), we compared FIG. 1. EPW dampingnormalized by the plasma frequency:
the exact value of the integrdlye *"dx=(1/n)I'(1/n) to wpe) Vs EPW wave vectonormalized by the Debye shielding
the result obtained from the integration of the sampled funCtgngth: ) ,.), for a Maxwellian velocity distribution on which a
tion. We can assert that the relative error is below 0  sinusoidal density modulation is superimposed with amplitade
(respectively 10%), for n=2 (respectively 5 Forn=2, the  and wave numbek,=1.2. Numerical solution obtained with seven
results of our method have been compared to those given armonics coupling foe=(a) 5%, (b) 10%, and(c) 20%. The fit
another routine that uses an expansiorypto orderz® for  (with only the harmonics G;1) is plotted fore= (d) 5%, () 10%,
|z|<1, a Gaussian integration f¢z| in the range[1,5] and  and(f) 20%.
an asymptotic expansion fdz|>5 [12]: a 0.1% difference
was found. Fon=5, we have compared our results to thosenomials; the error is less than 10% at maximum and essen-
in Ref.[4]; the latter are well-reproduced to within a few %. tially originates from the regions where the slopeyof «,0)
Our method requires less computer time: to compgels-  strongly varies.
ing Eq.(5) for one pair @,k) and for typical ICF parameters  Conditions for typical ICF conditions are electron tem-
(k=0.34) requires only 0.15 m@espectively 1 msfor n peratureT,=1 keV, £=0.1, and a wave numbég,, which
=2 (respectively $on a workstation ULTRA Sparc II. is given byks=2(wq/c)y1—ne/n, for SBBS in a electron
In addition to the kinetic model and to increase our un-gensityn,,/n,=0.1. (w, denotes the radial frequency of the
derstanding, we have developed a fluid model in which thencigent laser wave anu, the critical density beyond which
susceptibility is given by the relation Al/xe(k,®)  the laser light cannot propagateUnder such conditions,
= — 0l whet 1+ 3K = 2iy (k,0)/wye, Wherey (x,0) iSa only a few harmonics are strongly coupledn ~0.7).
fit of Landau damping in a homogeneous plasf@astands  Therefore, truncating Eq(1) after three harmonics;-1, 0
for e=0). Forn=2, the fit expression is obtained from Ref. and+1, allows us to find a correct fit to the kinetic damping

[12] as y.(x,&) in a modulated plasma, with the expression
(%0 _ \/gie—(slz)—l/zxz[l_,_(_0.5,(0.2_,_ 94135 yL(r,8) =~y (k,0)+As(k, ks,8) YLK+ Ks,0)
1) 3
be x 5 +AL(Kk,— Ks,8) YL (K— Ks,0). (8)
X (1—e~ (47877, (7)

The parameter A;(k, ks,&)=(e/2)?/[3(k+ ks)?>—3k?]?
This fit is within a 5% error of the exact solution of the denotes the coupling strength for the first harmonit3].
numerical solution forke[0,10]. The fit appears to be the Since the ratio Ai(k,ks,e)v (k+ ks,0)/A1(k,— Kg,&)
product of the usual Landau damping expression and a cotx y, (k—«.,0) is much larger than 1, the term;(x,
rection term(in bracket$ that converges to one far—0. In — kg,€) can be disregarded. Equati¢d) is not valid when
the rangg0.2-0.7, y, can be fitted by a simple power law v, (kx+ «¢,0) vanishegsee Figs. 1 and)2
6«°®, which can be used for simulating wave couplings with  In Figs. 1 and 2, the influence of the modulation is clearly
a simple difference operator in real space. Theaange, observed as a shoulder added to the left-hand side of the
wherey, exceeds 104(1)pe and increases strongly witty is  region, where the Landau damping drops dramatically. Con-
relevant to instability thresholds. Outside this range, thissequently, three regimes can be identified when decreasing
power law predicts too large a damping. Foe]2,5], we  «: (i) for high « values, the damping is unperturbed by the
have defined a fit as the sum of the first 30 Chebyshev polymodulation; (ii) for intermediatex values, the damping is
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FIG. 3. EPW dampingnormalized by the plasma frequency:
wpe) Vs EPW wave vecto(normalized by the Debye shielding
length: Npe) for a Maxwellian velocity distribution on which a
sinusoidal density modulation is superimposed with amplitude
£=10% and wave numbet;= (a) 0.1k, (b) 0.5«, (C) «, (d) 2x«,

tant si it ari f bal bet the i %eé 4k, (f) 6k, (g) 8k, and(h) 10«. The solid line labeled 0 corre-
constant, since 1t arises from a bajance between € INCreagfsnds to the unmodulated cage=0%). Numerical solution with
of A;(k,ks,e) and the decrease of, (k+ «s,0); (iii) for

g seven harmonics.
small « values, where the damping, (x+ «s,0) decreases
exponentially, the global EPW damping drops. The limit be-ygjid for x;=4«, as seen in Figs. 3 and 4. In the intermedi-
tween regimesi) and(ii) is roughly given by the equality  ate caseA;(«,«s,e) is almost constant until, (k+ «<,0)
Y.(k.,0) drops, vyhen;<+ KS-~O._3. We then conclude that a density
’ =A;(K,Kg,€). (9)  modulation, created either by a turbulence process or by the

YLk +ks,0) steepening of an IAW-driven SBBS, with wavelength equal
to a fraction of the EPW wavelength, might result in nonzero

| | | |

FIG. 2. EPW dampingnormalized by the plasma frequency:
wpe) VS EPW wave vectofnormalized by the Debye shielding
length:\pe) for a hyper-Gaussian velocity distribution. Same con-
ditions as in Fig. 1.

The coupling parameter is weak; e.g., £6£0.3 andx~0.3,
we find A;(k,ks,e)=<0.02. Consequently, the influence of
the density modulation becomes evident when the damping

ratio in Eq.(9) is larger than 1& Therefore, for any modu- 10
lation &, the boundary between the regim@9 and (iii) is
located wherey, («,0) decreases exponentially,rat 2 (re- 103

spectively 5 and k[0.2,0.3 (respectively[0.35,0.45, see
Ref. [4]). The bumps observed at smallvalues are due to
the excitation of higher wave vectors. They are characterizec |, |44
by a weak coupling strengthAy(k,ks,e)~(e/2)"/ 3
[3(k+mks)?—3k2]%. Equation(7) provides a good qualita- }
tive fit of the first shoulder and is sufficient to give a crude .
approximation at lowk.

In Figs. 3 and 4, we investigate the influencexgfbased
on Eq.(8) for n=2 andn=5. We have used a large range of 10
modulation wave vectorg;=mx«,me[0.1,10. The choice
m=2 corresponds to a LDI-driven IAW. Higfrespectively
low) values ofm would correspond to Raman scatter driven 107
by a 10(respectively J-um laser in a plasma modulated by
a 1 (respectively 19 um laser-driven SBBS. Wher> «q,
the coupling is so efficient that the shoulder appears at the
large valuex. Nevertheless, since, («+ k,0) is close to
7.(,0), the damping is only slightly different from the no- £ 4. EPW dampingnormalized by the plasma frequency:
modulation case. Wher<ks, the damping is given by the wpe) Vs EPW wave vectofnormalized by the Debye shielding
asymptotic expressiony, («,0)+ &2y, (xs,0)/36«s, which  length:\p.) for a hyper-Gaussian velocity distribution. Same con-
has a maximum in regim@) for xs~0.3. This expression is ditions as in Fig. 3.
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kinetic damping for any smak. This can be shown by ex- not too hot plasmasT,=1 keV, experimentA in Refs.
tending Eq.(8) to any weakly turbulent density profile [14,15)), our results clearly reproduce the experimental ob-
Ne(X)=Ne 1+ S 12,C0Ske))]: servation of the SRS quenching by SBS seeding. Indeed, by
N assuming the driven SBS-IAW amplitude to saturate at
- £=0.2, as noticed in Ref.15] and as would be inferred by
rlxee)) yL(K'OHp21 [Au(kksp ep) yLlat kspO) the ion trapping mechanisifl6], the damping rate of the
EPW at the experimental density,=0.13 is largely in-
+HAL(K, = Kspr&p) YLK~ Ksp0) ], 10 creased by the density modulation4.10 2w, (as would

where(s) denotes the average modulation. In this new conP€ given by a hpmogeneous plasmekrp=0.26) instead
text, the damping rate exhibits two behaviors: the usual Lan®f —4.10 °w; in the unmodulated caséXp=0.18). In
dau damping above,=0.3 and, at lowel, an anomalous hotter plasmasT.=3 keV) as created on NOVA laser, we
damping that depends on the statistics ©f (xs).- have also determined the impact of the modulation by esti-
In conclusion, the behavior of the kinetic damping for anmating the gain factor& with the usual convective highly
EPW has been investigated under conditions where botdamped EPW model. We have extended the usual expression
hyper-Gaussian electron distributions and short-wavelengtto modulated plasmas and have found that, for a 0.25 mm
density modulations are expected to occur. Regimes of ereng flat-density plasma, the gain is still in the linear regime
hanced Landau damping have been identified as a function gG<20) even for n,=0.2n., contrasting with the no-
the density modulation and the produk®sy, andksApe. A modulation case where the gain is in excess of 20 for densi-
static density modulation tends to keep the kinetic dampingies as low as 0.1 to reach 30 at 012,. More interesting

at large values in the wave-vector region where Landayesults on gains will be reported in a future publication.
damping is usually extremely low, even for hyper-Gaussian )
distributions. An analytic fit, calculated from a fluid model, ~ One of the authoréG.B.) wishes to thank B. Afeyan for

reproduces the results well. By comparing to experiments istimulating discussions.
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