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Landau damping of an electron plasma wave in a plasma with modulated density

Manuel Curtet and Guy Bonnaud
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~Received 21 April 1999!

The collisionless Landau damping is analyzed for a homogeneous plasma with a sinusoidal density pertur-
bation. The exact damping values are obtained by numerically solving the kinetic dispersion relation of the
electron plasma mode. Quantitative results are provided on the influence of the amplitude and the wave vector
of the density modulation. Within a simplified fluid framework, a fit is given to these data.
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In the context of inertial confinement fusion~ICF!, nu-
merous works have reported over the years on Raman
tering, which is able to amplify an electron plasma wa
~EPW! and a scattered electromagnetic wave~EMW!. The
first analytical predictions of its amplification mentione
gain lengths smaller than 10mm, whereas the latest exper
mental observations of substantial backscatter~say 1% frac-
tion of the incident energy! exhibit gain lengths of a few
hundredths of amm @1#. The usual predictions assume th
electron velocity and the density distribution to be Maxwe
ian and homogeneous, respectively. Various papers h
tried to explain the difference between theory and exp
ments by invoking secondary instabilities such as the La
muir decay instability~LDI ! of the EPW@2,3#, kinetic effects
associated with non-Maxwellian electron velocity distrib
tions @4#, or the presence of magnetic fields@5#. The relativ-
istic motion of the electrons could also be invoked but, ev
in high intensity regions of the laser focal spot, the elect
quiver velocity induced by the laser electric field usua
stays below 10% of the velocityc of light in vacuum.

Here, we concentrate on one of the background actor
the plasma collective behavior, namely, the EPW Land
damping, which needs to be considered when the elec
density is modulated and/or the velocity distribution is no
Maxwellian. The latter corresponds to the high-intens
limit in ICF plasmas whenever the electron heating by
verse bremsstrahlung is faster than the electron therma
tion @6#. We limit our study to a one-dimensional plasm
thereby disregarding any refraction processes. We ass
that the plasma density is perturbed by a static ion-acou
wave ~IAW; the influence of a growing IAW is outside th
scope of this paper!, with a sinusoidal pattern:ne(x)
5neo@11« cos(ksx)#, where«5dne /neo denotes the ampli-
tude of the density modulation andks is the IAW wave num-
ber. The coupling between an EPW and an IAW, with
spective wave numbersk and ks , is known to lead to the
generation of EPW harmonics with wave numberkm5k
1mks (m is an integer!. The number of intense harmonic
denoted mh , is roughly given by the relationmh

5A«/3(1/kslDe), wherelDe is the Debye shielding length
@7#. The larger this number, the stronger the Landau damp
of the shorter wavelength harmonics@8,3#. The relevant pa-
rameters of the problem are the density modulation« and the
normalized wave vectorsk[klDe and ks[kslDe . In our
first step, we shall assume that the IAW is produced by
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beating of an incident laser wave~wave-vectork0) with a
backscattered wave, driven by stimulated Brillouin bac
scattering~SBBS, the decay of the incident laser wave in
an EMW and an IAW! or by reflection; the IAW wave vecto
is then 2k0. The kinetic dispersion relation in a modulate
plasma was originally given by Barr and Chen@8#,

S 11
1

xe~k,v! D Ê~k,v!52
«

2
@Ê~k1ks ,v!1Ê~k2ks ,v!#,

~1!

where Ê is the time-space Fourier transform of the EP
electric field, (v,k) is the pair~radial frequency, wave vec
tor! associated with the EPW’s solutions of this dispers
relation, andxe is the electron susceptibility given by

xe~k,v!5
vpe

2

k2neo
E

2`

1` ]v f o

v2kv
dv. ~2!

vpe is the background electron plasma frequency andf 0 is
the initial velocity distribution. Following Ref.@6,9,10,4#, f 0
can be cast into the general expression

f 0~v !5C~n!
neo

vTe
3

e2(uvu/a
evTe

)n
, ~3!

wherevTe is the thermal velocity,ae5A3G(3/n)/G(5/n) ~G
is the gamma function! andC(n) is the normalization factor
n/@4pae

3G(3/n)#. In laser-plasma interaction, the expone
can be increased from 2 to 5 by increasing the laser inten
and consequently the heating rate. The EPW frequency
the Landau damping have been recently analyzed as a f
tion of the exponentn in Ref. @4#.

Equation~1! is solved using a Newton-Raphson algorith
that is well adapted to finding the zeros of nonlinear eq
tions @11#. For calculatingxe , we have chosen a gener
method based on the sampling theorem@11# that can deal
with any hyper-Gaussian velocity distribution,

gn~ t ![e2utun5 (
m52`

1`

e2utmunsincFph ~ t2tm!G1err~ t !

~4!
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where sinc(x)[sin(x)/x, tm5mh, h is the sampling time
step, and err(t) is the error, which can be disregarded if th
Fourier transformGn(v)[FT(gn) is small enough foruvu
>1/h. In our case,gn andGn decrease sufficiently for larg
t andv that we can reasonably truncate the series in Eq.~4!.
After some algebra and definingz5v/klDe , Eq. ~2! be-
comes@for Im(z).0]

xe~k,v!5
2paeC~n!

~klDe!
2 F2

n
GS 1

nD1
z

ae
ZnS z

ae
D G , ~5!

with

Zn~z!5 (
m52N

1N

he2utmun 12~21!me2 i (pz/h)

tm2z
. ~6!

For the half-space Im(z),0, we useZn(z)5@Zn(z* )#*
12ipe2zn

~where * denotes the complex conjugate!. For
n52 ~respectively 5!, we use (N,h)5(25,0.25) @respec-
tively ~100,0.02!#. To choose the pair (N,h), we compared
the exact value of the integral*0

`e2xndx5(1/n)G(1/n) to
the result obtained from the integration of the sampled fu
tion. We can assert that the relative error is below 10215

~respectively 1029), for n52 ~respectively 5!. For n52, the
results of our method have been compared to those give
another routine that uses an expansion ofxe to orderz5 for
uzu,1, a Gaussian integration foruzu in the range@1,5# and
an asymptotic expansion foruzu.5 @12#: a 0.1% difference
was found. Forn55, we have compared our results to tho
in Ref. @4#; the latter are well-reproduced to within a few %
Our method requires less computer time: to computexe us-
ing Eq.~5! for one pair (v,k) and for typical ICF parameter
(k50.34) requires only 0.15 ms~respectively 1 ms! for n
52 ~respectively 5! on a workstation ULTRA Sparc II.

In addition to the kinetic model and to increase our u
derstanding, we have developed a fluid model in which
susceptibility is given by the relation 111/xe(k,v)
52v2/vpe

2 1113k222igL(k,0)/vpe , wheregL(k,0) is a
fit of Landau damping in a homogeneous plasma~0 stands
for «50). Forn52, the fit expression is obtained from Re
@12# as

gL~k,0!

vpe
5Ap

8

1

k3
e2(3/2)21/2k2

@11~20.5k0.219k13/3!

3~12e2(4.78k)5
!#. ~7!

This fit is within a 5% error of the exact solution of th
numerical solution forkP@0,10#. The fit appears to be th
product of the usual Landau damping expression and a
rection term~in brackets! that converges to one fork→0. In
the range@0.2–0.7#, gL can be fitted by a simple power law
6k6, which can be used for simulating wave couplings w
a simple difference operator in real space. Thek range,
wheregL exceeds 1024vpe and increases strongly withk, is
relevant to instability thresholds. Outside this range, t
power law predicts too large a damping. FornP]2,5], we
have defined a fit as the sum of the first 30 Chebyshev p
-
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-
e

r-

s

y-

nomials; the error is less than 10% at maximum and ess
tially originates from the regions where the slope ofgL(k,0)
strongly varies.

Conditions for typical ICF conditions are electron tem
peratureTe51 keV, «50.1, and a wave numberks , which
is given byks52(v0 /c)A12ne0 /nc for SBBS in a electron
densityne0 /nc50.1. (v0 denotes the radial frequency of th
incident laser wave andnc the critical density beyond which
the laser light cannot propagate.! Under such conditions
only a few harmonics are strongly coupled (mh'0.7).
Therefore, truncating Eq.~1! after three harmonics,21, 0
and11, allows us to find a correct fit to the kinetic dampin
gL(k,«) in a modulated plasma, with the expression

gL~k,«!'gL~k,0!1A1~k,ks ,«!gL~k1ks,0!

1A1~k,2ks ,«!gL~k2ks,0!. ~8!

The parameter A1(k,ks ,«)5(«/2)2/@3(k1ks)
223k2#2

denotes the coupling strength for the first harmonics@13#.
Since the ratio A1(k,ks ,«)gL(k1ks,0)/A1(k,2ks ,«)
3gL(k2ks,0) is much larger than 1, the termA1(k,
2ks ,«) can be disregarded. Equation~8! is not valid when
gL(k1ks,0) vanishes~see Figs. 1 and 2!.

In Figs. 1 and 2, the influence of the modulation is clea
observed as a shoulder added to the left-hand side of
region, where the Landau damping drops dramatically. C
sequently, three regimes can be identified when decrea
k: ~i! for high k values, the damping is unperturbed by t
modulation; ~ii ! for intermediatek values, the damping is

FIG. 1. EPW damping~normalized by the plasma frequenc
vpe) vs EPW wave vector~normalized by the Debye shieldin
length: lDe), for a Maxwellian velocity distribution on which a
sinusoidal density modulation is superimposed with amplitude«
and wave numberks51.2k. Numerical solution obtained with seve
harmonics coupling for«5~a! 5%, ~b! 10%, and~c! 20%. The fit
~with only the harmonics 0,11! is plotted for«5 ~d! 5%, ~e! 10%,
and ~f! 20%.
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constant, since it arises from a balance between the incr
of A1(k,ks ,«) and the decrease ofgL(k1ks,0); ~iii ! for
small k values, where the dampinggL(k1ks,0) decreases
exponentially, the global EPW damping drops. The limit b
tween regimes~i! and ~ii ! is roughly given by the equality

gL~k,0!

gL~k1ks,0!
5A1~k,ks ,«!. ~9!

The coupling parameter is weak; e.g., for«<0.3 andk'0.3,
we find A1(k,ks ,«)<0.02. Consequently, the influence
the density modulation becomes evident when the damp
ratio in Eq.~9! is larger than 104. Therefore, for any modu
lation «, the boundary between the regimes~ii ! and ~iii ! is
located wheregL(k,0) decreases exponentially, atn52 ~re-
spectively 5! and kP@0.2,0.3# ~respectively@0.35,0.45#, see
Ref. @4#!. The bumps observed at smallk values are due to
the excitation of higher wave vectors. They are characteri
by a weak coupling strengthAm(k,ks ,«);(«/2)2m/
@3(k1mks)

223k2#2. Equation~7! provides a good qualita
tive fit of the first shoulder and is sufficient to give a cru
approximation at lowk.

In Figs. 3 and 4, we investigate the influence ofks based
on Eq.~8! for n52 andn55. We have used a large range
modulation wave vectorsks5mk,mP@0.1,10#. The choice
m52 corresponds to a LDI-driven IAW. High~respectively
low! values ofm would correspond to Raman scatter driv
by a 10~respectively 1!-mm laser in a plasma modulated b
a 1 ~respectively 10!-mm laser-driven SBBS. Whenk@ks ,
the coupling is so efficient that the shoulder appears at
large valuek. Nevertheless, sincegL(k1ks,0) is close to
gL(k,0), the damping is only slightly different from the no
modulation case. Whenk!ks , the damping is given by the
asymptotic expressiongL(k,0)1«2gL(ks,0)/36ks

4 , which
has a maximum in regime~ii ! for ks'0.3. This expression is

FIG. 2. EPW damping~normalized by the plasma frequenc
vpe) vs EPW wave vector~normalized by the Debye shieldin
length:lDe) for a hyper-Gaussian velocity distribution. Same co
ditions as in Fig. 1.
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valid for ks>4k, as seen in Figs. 3 and 4. In the intermed
ate case,A1(k,ks ,«) is almost constant untilgL(k1ks,0)
drops, whenk1ks'0.3. We then conclude that a densi
modulation, created either by a turbulence process or by
steepening of an IAW-driven SBBS, with wavelength equ
to a fraction of the EPW wavelength, might result in nonze

-

FIG. 3. EPW damping~normalized by the plasma frequenc
vpe) vs EPW wave vector~normalized by the Debye shieldin
length: lDe) for a Maxwellian velocity distribution on which a
sinusoidal density modulation is superimposed with amplitu
«510% and wave numberks5 ~a! 0.1k, ~b! 0.5k, ~c! k, ~d! 2k,
~e! 4k, ~f! 6k, ~g! 8k, and ~h! 10k. The solid line labeled 0 corre
sponds to the unmodulated case~«50%!. Numerical solution with
seven harmonics.

FIG. 4. EPW damping~normalized by the plasma frequenc
vpe) vs EPW wave vector~normalized by the Debye shieldin
length:lDe) for a hyper-Gaussian velocity distribution. Same co
ditions as in Fig. 3.
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kinetic damping for any smallk. This can be shown by ex
tending Eq. ~8! to any weakly turbulent density profil
ne(x)5neo@11(p51

N «pcos(kspx)#:

gL~k,^«&!'gL~k,0!1 (
p51

N

@A1~k,ksp ,«p!gL~k1ksp,0!

1A1~k,2ksp ,«p!gL~k2ksp,0!#, ~10!

where^«& denotes the average modulation. In this new c
text, the damping rate exhibits two behaviors: the usual L
dau damping aboveks>0.3 and, at lowerk, an anomalous
damping that depends on the statistics of («p ,ksp).

In conclusion, the behavior of the kinetic damping for
EPW has been investigated under conditions where b
hyper-Gaussian electron distributions and short-wavelen
density modulations are expected to occur. Regimes of
hanced Landau damping have been identified as a functio
the density modulation and the productsklDe andkslDe . A
static density modulation tends to keep the kinetic damp
at large values in the wave-vector region where Land
damping is usually extremely low, even for hyper-Gauss
distributions. An analytic fit, calculated from a fluid mode
reproduces the results well. By comparing to experiment
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not too hot plasmas (Te51 keV, experimentA in Refs.
@14,15#!, our results clearly reproduce the experimental o
servation of the SRS quenching by SBS seeding. Indeed
assuming the driven SBS-IAW amplitude to saturate
«50.2, as noticed in Ref.@15# and as would be inferred by
the ion trapping mechanism@16#, the damping rate of the
EPW at the experimental densityne50.13 is largely in-
creased by the density modulation,24.1023vpe ~as would
be given by a homogeneous plasma atklDe50.26) instead
of 24.1026vpe in the unmodulated case (klDe50.18). In
hotter plasmas (Te53 keV) as created on NOVA laser, w
have also determined the impact of the modulation by e
mating the gain factorsG with the usual convective highly
damped EPW model. We have extended the usual expres
to modulated plasmas and have found that, for a 0.25
long flat-density plasma, the gain is still in the linear regim
(G,20) even for ne50.2nc , contrasting with the no-
modulation case where the gain is in excess of 20 for de
ties as low as 0.16nc to reach 30 at 0.2nc . More interesting
results on gains will be reported in a future publication.

One of the authors~G.B.! wishes to thank B. Afeyan for
stimulating discussions.
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